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Abstract
Based on generalized quantum Langevin equations for the tight-binding wavefunction
amplitudes and lattice displacements, electron and phonon quantum transport are obtained
exactly using molecular dynamics (MD) in the ballistic regime. The electron–phonon
interactions can be handled with a quasi-classical approximation. Both charge and energy
transport and their interplay can be studied. We compare the MD results with those of a fully
quantum mechanical nonequilibrium Green’s function (NEGF) approach for the electron
currents. We find a ballistic to diffusive transition of the electron conduction in one-dimensional
chains as the chain length increases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interaction of electrons with phonons in open nonequi-
librium molecular structures is of great importance within
the context of molecular electronics [1, 2]. A variety of
methods at different levels of sophistication has been used
to study this problem, each working at a specific parameter
range [1, 3]. The perturbative approach with a self-consistent
Born approximation (SCBA) works well when the electron–
phonon interaction (EPI) is weak, and has been used in the
first-principles study [4]. In the strong interaction limit, it
is possible to eliminate the bilinear EPI term via a canonical
transformation [5]. This latter approach is useful to study toy
model systems. It can provide exact solutions only for several
special cases, e.g. without direct tunneling between different
electron states [6]. It is also possible to study the coherent
electron–phonon dynamics in the full coupling regimes using
the scattering theory [7], but this kind of method ignores
dephasing between electrons and phonons. Hybrid approaches
exist, where the electron part is treated quantum-mechanically,
while the phonon system is handled by classical MD [8] with
quantum corrections [9]. Most of the above methods are
developed within the context of electronic transport. The
inclusion of phonon transport appeared only very recently,
mainly using the NEGF approach [10, 11].

1 Present address: DTU Nanotech, NanoDTU, Technical University of
Denmark, 2800 Lyngby, Denmark.

Molecular dynamics is usually viewed as a method that
produces only classical results. In this paper, we introduce
a new MD method to study the coupled electron and phonon
transport in open molecular junctions for the quantum systems.
It is based on a generalized Langevin equation [12] for
electrons and phonons, which so far has been used to study
their quantum transport separately [13, 14]. The formalism is
exact in the ballistic case, i.e. without the EPI. Quasi-classical
approximation [15] is made to the full quantum many-body
problem for interacting systems. It does not have to assume
a bilinear form of the EPI Hamiltonian, and it is applicable to
the full electron–phonon coupling range. More importantly,
the method can simulate large systems. In the rest of the paper,
we introduce a model system, derive the quantum Langevin
equations, and analyze the approximation involved. We present
the MD numerical results of molecular chains, and compare
them with those from the NEGF method.

2. Model and theory

Consider a typical LC R structure for transport study, where
a molecular structure (C) is connected with two semi-infinite
leads (L and R) as electron and phonon reservoirs. The two
leads are linear systems in their respective thermal equilibrium
states characterized by the chemical potential and temperature.
Possible many-body interactions only exist in the central
region. The total Hamiltonian is the sum of the two subsystems
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and their interaction, He + Hph + Hepi. The phonon part is

Hph =
∑

α=L ,C,R

H α
ph+(uL)TV LC

ph uC +(uC)TV C R
ph u R +Vn, (1)

where H α
ph = 1

2 (u̇α)Tu̇α + 1
2 (u

α)T K αuα . uα is a column vector
consisting of all the displacement operators in the α region,
and u̇α is its conjugate momentum. The atomic mass has been
absorbed into u j = √

m j x j . K α is the spring constant matrix.
V LC

ph is the coupling matrix between the left lead and the central

molecule, and V CL
ph = (V LC

ph )T, similarly for V C R
ph . Vn is an

anharmonic potential, which only depends on uC . The electron
subsystem is given in a tight-binding form in an orthogonal
basis,

He =
∑

α=L ,C,R

cα†T αcα +
∑

α=L ,R

(
cC †

V Cα
e cα + h.c.

)
, (2)

cα (cα†) is the column (row) vector containing all the
annihilation (creation) operators in the α region. V Cα

e has a
similar meaning to V Cα

ph , and V Cα
e = (V αC

e )†. h.c. represents
Hermitian conjugate. The total electron energy under the
Born–Oppenheimer approximation depends on the position
of the atoms, so that we can make a Taylor expansion of
it about the atomic equilibrium positions, and obtain the
electron–phonon interaction terms (e.g. from a first-principles
calculation)

Hepi =
∑

i jk

c†
i Mk

i j c j uk + 1
2

∑

i, j,k,l

c†
i Mkl

i j c j ukul + · · · , (3)

Hepi includes all the higher order terms of the Taylor expansion.
The superscript C has been omitted since EPI only takes place
in the center part. Mk

i j and Mkl
i j are the first and second order

EPI coefficients, respectively.
Working in the Heisenberg picture, we obtain the

equations of motion for operators uα and cα , e.g. for c,

i ċα = T αcα + V αC
e cC, (α = L, R), (4)

i ċC = T C cC + V CL
e cL + V C R

e cR + [cC, Hepi]. (5)

We set h̄ = 1, e = 1 throughout the formulae. The lead
operators can be solved formally,

cα(t) = igr
α(t, t1)c

α(t1) +
∫ t

t1

gr
α(t, t ′)V αC

e cC(t ′) dt ′, (6)

where gr
α(t, t ′) = −iθ(t − t ′)〈[cα(t), c†α

(t ′)]+〉 is the electron
retarded Green’s function for the lead α. It satisfies

i
∂

∂ t ′ gr
α(t, t ′) + gr

α(t, t ′)T α = −Iδ(t − t ′), (7)

with the boundary condition gr
α(t, t ′) = 0 (t < t ′). Using

equation (6), the equation of motion of the central operator
reads

iċC = T CcC +
∫ t

t1

�r (t, t ′)cC(t ′) dt ′ + ξ +
∑

k

MkukcC . (8)

Similar equations can be derived for the phonon displacement
operators [16],

üC = −K C uC + Fn −
∫ t

t1

�r (t, t ′)uC(t ′) dt ′

+ η − cC †
McC . (9)

Fn is the force due to anharmonic effect. The last terms of
equations (8) and (9) are due to EPI. We have only kept the
first order term of the Taylor expansion, although inclusion of
higher orders is straightforward. Equations (8) and (9) have
the form of the generalized Langevin equation for the quantum
Brownian motion [17].

Let us try to understand these two equations. The damping
kernels �r = �r

L+�r
R and �r = �r

L+�r
R are the electron and

phonon retarded self-energies in the NEGF formalism. They
are defined as, e.g. for electrons

�r
α(t, t ′) = V Cα

e gr
α(t, t ′)V αC

e , (α = L, R). (10)

In the wide-band limit, the coupling with the leads does not
depend on the energy. The damping kernel approaches the
memoryless δ-function in the time domain. ξ = ξL (t) + ξR(t)
and η = ηL(t)+ ηR(t) are electron and phonon random noises
due to the leads (α = L, R)

ξα(t) = iV Cα
e gr

α(t, t1)c
α(t1), (11)

and

ηα(t) = V Cα
ph

[
dr

α(t, t1)u̇
α(t1) − ḋr

α(t, t1)u
α(t1)

]
. (12)

dr
α(t, t1) = −iθ(t − t1)〈[uα(t), uα(t1)T]〉 is the lead retarded

Green’s function for phonons. In the leads the electron and
phonon subsystems do not couple. They are both linear
systems. In addition, the left and right leads do not interact
directly. The statistical properties of the random noises are
determined by the equilibrium ensembles at the remote pass,
t1. Working in the eigenmode representation, we can show that
the expectation value of each noise term is zero. We can also
obtain their correlation matrices, e.g. for electrons


α(t, t ′) = 〈ξ†
α (t ′)ξT

α (t)〉T = −i�<
α (t − t ′). (13)

As expected, it does not depend on the initial time t1, and is
time translationally invariant. It is convenient to work in the
Fourier domain,


̃α[ω] =
∫ +∞

−∞

α(t − t ′) eiω(t−t ′) dt = f α

e (ω)�α
e [ω]. (14)

f α
e (ω) is the Fermi distribution function. �α

e [ω] = i(�r
α[ω] −

�a
α[ω]) denotes the coupling with the leads. 
̃α[ω] is positive

semi-definite, as required from a classical noise correlation.
The phonon noise has a similar relation. A symmetric form
is used here [16]

F̃α[ω] = 1
2

∫ +∞

−∞

(〈
ηα(t)η

T
α(t ′)

〉+ 〈
ηα(t ′)ηT

α(t)
〉T)

eiω(t−t ′) dt

=
(

f α
ph(ω) + 1

2

)
�α

ph[ω], (15)
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where f α
ph(ω) is the Bose distribution for phonons, �ph is

similar to �e.
We notice that the noise equations (11) and (12) contain

operators that satisfy anti-commutation or commutation
relations. Electrons and phonons need different treatment.
Equations (13) and (14) are only applicable to electrons. To
study the hole transport, we need to use the correlation matrix
〈ξα(t)ξ†

α (t ′)〉. For phonons a symmetrization is needed to
eliminate an imaginary part of the correlation. In both cases the
relation between the damping and the noise term is a kind of
manifestation of the quantum fluctuation-dissipation theorem.

The electrical and energy current can be obtained from
different methods. We can use the current continuity condition.
In the case of a discrete Hamiltonian, the electrical current
from cell j − 1 to cell j is, with only the lowest EPI term
included,

I j = −i
(

c†
j Tj, j−1c j−1 +

∑

k

c†
j Mk

j, j−1c j−1uk − h.c.
)
. (16)

We can also get the current from each lead by studying the time
derivative of the electron number

Iα = −dNα

dt
= −i(cC †

Bα − h.c.), (17)

where Bα = V Cαcα = ξα + ∫ t
t1

�r
α(t, t ′)cC(t ′) dt ′. In the same

way, the electron energy current is

I E
α = −dHα

dt
= −(B†ċC + h.c.). (18)

So far the formal quantum Langevin equations are in terms
of operators. To perform an MD simulation, we need to turn
the operators into numbers. This is achieved by taking their
quantum mechanical expectation values at the beginning of the
dynamics. It is reasonable to assume that the central region and
the two leads are decoupled at that time. The two baths assume
canonical equilibrium distributions, and the central region is
in an arbitrary state denoted by the density matrix ρC . The
expectation value of any operator AC is 〈AC〉 = Tr{ρC AC}.
Taking the expectation value of these operators, generating
the noise series using their correlations [16], the operator
Langevin equations are turned into c-number equations. For
products of operators, mean-field type approximation is used,
e.g. 〈cu〉 ≈ 〈c〉〈u〉. MD simulation can be done using these
two equations. The final result is the ensemble average over the
initial states. To evaluate the electrical current, the operators
in equations (16)–(18) are replaced by the c-numbers obtained
from MD simulation, and also c† replaced by c∗, which is the
complex conjugate of c. By doing this, we have taken the
classical approximation to the operators.

One may cast doubt that this approximation may be too
inaccurate to give reasonable results for the fermionic system
for the electrical current. However, we can show rigorously
that for the ballistic case the classical Langevin dynamics with
the appropriate noises gives exactly the same result as that
predicted by the NEGF method [14, 18, 19]. To do this, we
define

− i2πδ(ω − ω′)G<[ω] ≡ 〈c∗[ω′]cT[ω]〉T, (19)

and

i2πδ(ω − ω′)Gr [ω]�>
α [ω] ≡ 〈c[ω]ξ†

α [ω′]〉; (20)

similarly for the phonon variables

i2πδ(ω − ω′)D<[ω] ≡ 〈u∗[ω′]uT[ω]〉T, (21)

and

i2πδ(ω − ω′)Dr [ω]�>
α [ω] ≡ 〈u[ω]η†

α[ω′]〉. (22)

We write equation (17) in the energy domain and substitute the
equations (19) and (20) into it. After some rearrangement, we
get exactly the Meir–Wingreen formula in the NEGF method.
The only difference is that now the two Green’s functions are
defined as in equations (19) and (20). To further analyze the
difference between the present method and the NEGF method,
we write the Langevin equations in the frequency domain

cC[ω] = Gr
0[ω]

(
ξ [ω] +

∫
Mkuk[ω′]cC[ω − ω′]dω′

2π

)
, (23)

uC[ω] = Dr
0[ω]

(
−η[ω] − Fn[ω]

+
∫

cC †[ω]McC[ω − ω′]dω′

2π

)
. (24)

We also have

Bα[ω] = ξα[ω] + �r
α[ω]cC[ω]. (25)

In the ballistic case, we can see that G< and Gr reduced to G<
0

and Gr
0, which are the lesser and retarded Green’s functions

without EPI in the NEGF formula. The two methods are
exactly the same. In the presence of EPI, equations (23)
and (24) are coupled. Repeated iteration with respective
to cC [ω] and uC [ω] gives an infinite series of terms. If
we compare the lowest nonlinear terms in the quasi-classical
approximation with that of the NEGF method, we find that the
quasi-classical approximation only reproduces correctly part of
the NEGF terms. That is out of the seven nonlinear self-energy
graphs in the NEGF method, two of the graphs involving G>

are replaced by −G< in the quasi-classical approximation. This
is because we do not have the (anti-)commutation relations
for the Bose (Fermi) operators. These wrong terms are not
important when the electron number per site in the center
region is small or the EPI is not strong, which defines the
application range of the quasi-classical approximation.

3. Numerical results and discussions

To illustrate the present approach, we take a simple one-
dimensional (1D) atomic chain connected with two 1D leads
and simulate the coupled equations (8) and (9) on a computer.
Each atom has only one displacement degree of freedom and
one spinless electron state. We take the two leads to be the
same with spring constant kl, hopping matrix element −hl, and
electron on-site energy εl. kc, −hc, and εc denote those of the
central part. Their couplings are −ve and −vph for electrons

3
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Figure 1. Ballistic electron quantum conductance as a function of the
hopping matrix element between the two atoms hc at 1 K. Other
parameters are εc = εl = 0, h l = 0.1 eV, ve = 0.1 eV. The line is
from NEGF and the dots are MD.

and phonons. Some of the matrices, e.g. T C and V LC
e , are

given by

T C =

⎛

⎜⎜⎝

εc −hc 0 · · ·
−hc εc −hc · · ·

0 −hc εc −hc

· · · 0 −hc εc

⎞

⎟⎟⎠ , (26)

V LC
e =

⎛

⎝
0 · · ·
0 0 · · ·

−ve 0 0 · · ·

⎞

⎠ . (27)

The lead Green’s functions have analytical solutions [11].
The anharmonic force Fn is turned off in order to perform a
comparison with the NEGF method. The voltage is applied
by shifting the chemical potentials of the two leads. A tight-
binding Su–Schrieffer–Heeger type EPI term [20]

Hepi = m
L−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
(ui+1 − ui ) (28)

is used in the simulation. The Langevin equations, with all the
operators replaced by their expectation values, are numerically
solved using a fourth order Runge–Kutta method. A time-step
of �t = 5 × 10−17 s and 106 MD steps are used for each data
point. As for the NEGF results, the Meir–Wingreen expression
for electrical current [19], Iα = e

2π

∫
Tr{G>�<

α − G<�>
α }dω,

is used. The greater (lesser) self-energy �>
α [ω] (�<

α [ω]) is due
to the lead α. G>[ω] (G<[ω]) is the greater (lesser) Green’s
function of the central region. A finite difference is used to
calculate the quantum conductance from the electrical current.

We first demonstrate that the MD and the NEGF method
give the same results in the ballistic case. Figure 1 shows
the ballistic electron conductance of a two-atom chain as a
function of the hopping matrix element between them hc.
When hc = 0.1 eV, the conductance reaches a maximum value
corresponding to one quantum unit (e2/2π h̄). The MD and
the NEGF method give exactly the same results within the
statistical errors of the MD simulation. This can also be seen
from the ballistic I –V curve in figure 2 (the upper curve in the
main panel).

0

1

2

3

4

 0  0.05  0.1  0.15  0.2

I (
μA

)

V (V)

0.1 0.2 0.3 0.4

5

7

I

m

Figure 2. Current–voltage characteristics of the two-atom chain at
1 K with the following parameters: h l = 1.0, hc = 0.1 eV,
ve = 0.32 eV, εc = εl = 0, kl = kc = 0.5 eV/(amu Å

2
),

vph = 0.1 eV/(amu Å
2
), and m = 0.2 eV/(amu

1
2 Å). A small

on-site spring constant k0 = 0.2kc is applied for the whole structure.
MD results are shown as points and NEGF as lines. The filled dots
and the straight line are the ballistic results. The lower line and the
unfilled dots are results with EPI. The inset shows the electrical
current as a function of EPI strength m at V = 0.2 V.

Now we turn on the EPI. The main panel of figure 2
shows the I –V characteristics of the two-atom junction. The
lower and upper curves are with and without EPI, respectively.
In the presence of EPI, both methods give approximate
results. The NEGF results are based on the SCBA, where
only the non-crossed Feynman diagrams are included in the
self-energies [11]. The MD method is non-perturbative and
includes both crossed and non-crossed diagrams, but only part
of these diagrams is treated correctly. As a result, the electrical
current from MD is lower than that from the NEGF method.
This can also be seen from the inset of figure 2 where we
change the electron–phonon interaction strength at an applied
bias of 0.2 V.

A detailed analysis of the high order terms in the quasi-
classical approximation shows that its accuracy depends much
on the electron average occupation number in the center
region. When the electron number in small, the diagrams
that the quasi-classical approximation treats incorrectly are not
important. In this regime, the MD method should be accurate
quantitative. Out of this regime, it can only give qualitative
results. This analysis is confirmed in figure 3, where we
show the electrical current and average electron number per
atom as a function of the electron on-site energy in the center
region. The electron number from the two methods shows
slight discrepancy only when the on-site energy is very low.
The MD electrical current agrees with the NEGF method only
when the electron number is below 0.3.

The MD approach has its advantage: it can handle much
larger systems than the NEGF method. This is easy to
understand. Given the total degrees of freedom N , we only
need to solve a set of 2N coupled equations in the MD method,
while in the NEGF method matrix multiplication and inverse
need much longer computer time (of order N3). In figure 4,
we show the length dependence of the electron conductance.
Study of this effect using the NEGF method is formidable.
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Figure 3. The electrical current I (a) and the average electron
number per site n (b) at V = 0.04 V as a function of electron on-site
energy εc in the center. The electron–phonon interaction
m = 0.2 eV/(amu

1
2 Å). All other parameters are the same as in

figure 2.
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 1  10  100  1000
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(e
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MD, 300K
NEGF, 1K
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Figure 4. Log scale plot of the electron conductance as a function of
chain length for m = 0.05 eV/(amu

1
2 Å), h l = hc = ve = 0.1 eV,

and εc = εl = 0. Phonon parameters are the same as in figure 2.

Besides the long computer time needed, convergence is also
hard to achieve for long chains. From the log scale plot,
we find a length independent conductance for short chains
and close to inverse linear (1/L) dependence for long chains.
This corresponds to a ballistic to diffusive transition of the
electronic transport. This transition takes place earlier at 300
K due to more available phonons for scattering. Previous study
of this transition relied on a phenomenological method [21].
Thus a first-principle method that is able to cover both regions
is highly desirable. The MD method proposed here could be
one candidate.

The NEGF results should be valid at small values of EPI.
But at intermediate interaction range, no good approximation
exists. From this point of view, the MD method proposed
here provides an alternative non-perturbative way to study the
coupled electron–phonon dynamics in the intermediate EPI
regime, although it is quantitatively accurate only when the
electron occupation number is small. The MD method does
not depend on the forms of the EPI Hamiltonian and the
phonon anharmonic potential, though not exploited here. More
importantly, it can handle much larger systems than the NEGF

method. Further improvement of the results may be obtained
by including higher order quantum corrections [9, 22].

4. Conclusions

In summary, we have proposed an MD method to study the
coupled electron and phonon transport in open nonequilibrium
molecular structures. It is based on the generalized quantum
Langevin equations. The effects of the leads are reflected in
the Langevin equations as noises and damping terms, which
satisfy the quantum fluctuation-dissipation theorem. Quantum
effects of the leads are taken into account properly at least
for the electrical or energy current calculation. The method
gives exact results for both electrons and phonons in the
ballistic transport regime. When there is EPI, it is a quasi-
classical approximation. The approximation is valid when
the electron occupation number in the center region is small.
The method shows its advantages in treating large systems,
where a fully quantum mechanical study is formidable. We
illustrate this by studying the ballistic to diffusive transition
of the electrical conductance in 1D chains. Although only
examples of electrical currents are presented here, it has other
applications. For example, we can also study thermoelectric
transport in molecular structures.
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